bsw215583320
2025-04-10 2052071ffeb03831056afea0b1810847fcec53b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import time
import cv2
import numpy as np
import onnxruntime
 
 
class SAFETY_DETECT:
 
    def __init__(self, path, conf_thres=0.35, iou_thres=0.5):
        self.conf_threshold = conf_thres
        self.iou_threshold = iou_thres
 
        # Initialize model
        self.initialize_model(path)
        self.color_palette = [(np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)) for _ in
                              range(100)]
    def __call__(self, image):
        return self.detect_objects(image)
 
    def initialize_model(self, path):
        self.session = onnxruntime.InferenceSession(path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.class_names = eval(self.session.get_modelmeta().custom_metadata_map['names'])
        # Get model info
        self.get_input_details()
        self.get_output_details()
 
    def detect_objects(self, image):
        input_tensor, ratio = self.prepare_input(image)
 
        # Perform inference on the image
        outputs = self.inference(input_tensor)
 
        self.boxes, self.scores, self.class_ids = self.process_output(outputs, ratio)
 
        return self.boxes, self.scores, self.class_ids
 
    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]
 
        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
        # Resize图片不要直接使用resize,需要按比例缩放,空白区域填空纯色即可
        input_img, ratio = self.ratioresize(input_img)
 
        # Scale input pixel values to 0 to 1
        input_img = input_img / 255.0
        input_img = input_img.transpose(2, 0, 1)
        input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
 
        return input_tensor, ratio
 
    def inference(self, input_tensor):
        start = time.perf_counter()
        outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
 
        # print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
        return outputs
 
    def process_output(self, output, ratio):
        predictions = np.squeeze(output[0]).T
 
        # Filter out object confidence scores below threshold
        scores = np.max(predictions[:, 4:], axis=1)
        predictions = predictions[scores > self.conf_threshold, :]
        scores = scores[scores > self.conf_threshold]
 
        if len(scores) == 0:
            return [], [], []
 
        # Get the class with the highest confidence
        class_ids = np.argmax(predictions[:, 4:], axis=1)
 
        # Get bounding boxes for each object
        boxes = self.extract_boxes(predictions, ratio)
 
        # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
        indices = self.nms(boxes, scores, self.iou_threshold)
 
        return boxes[indices], scores[indices], class_ids[indices]
 
    def extract_boxes(self, predictions, ratio):
        # Extract boxes from predictions
        boxes = predictions[:, :4]
 
        # Scale boxes to original image dimensions
        # boxes = self.rescale_boxes(boxes)
        boxes *= ratio
 
        # Convert boxes to xyxy format
        boxes = self.xywh2xyxy(boxes)
 
        return boxes
 
    def rescale_boxes(self, boxes):
 
        # Rescale boxes to original image dimensions
 
        input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
 
        return boxes
 
    def get_input_details(self):
        model_inputs = self.session.get_inputs()
        self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
 
        self.input_shape = model_inputs[0].shape
        self.input_height = self.input_shape[2]
        self.input_width = self.input_shape[3]
 
    def get_output_details(self):
        model_outputs = self.session.get_outputs()
        self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
 
    # 等比例缩放图片
    def ratioresize(self, im, color=114):
        shape = im.shape[:2]
        new_h, new_w = self.input_height, self.input_width
        padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color
 
        # Scale ratio (new / old)
        r = min(new_h / shape[0], new_w / shape[1])
 
        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
 
        if shape[::-1] != new_unpad:
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
 
        padded_img[: new_unpad[1], : new_unpad[0]] = im
        padded_img = np.ascontiguousarray(padded_img)
        return padded_img, 1 / r
 
    def nms(self, boxes, scores, iou_threshold):
        # Sort by score
        sorted_indices = np.argsort(scores)[::-1]
 
        keep_boxes = []
        while sorted_indices.size > 0:
            # Pick the last box
            box_id = sorted_indices[0]
            keep_boxes.append(box_id)
 
            # Compute IoU of the picked box with the rest
            ious = self.compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
 
            # Remove boxes with IoU over the threshold
            keep_indices = np.where(ious < iou_threshold)[0]
 
            # print(keep_indices.shape, sorted_indices.shape)
            sorted_indices = sorted_indices[keep_indices + 1]
 
        return keep_boxes
 
    def compute_iou(self, box, boxes):
        # Compute xmin, ymin, xmax, ymax for both boxes
        xmin = np.maximum(box[0], boxes[:, 0])
        ymin = np.maximum(box[1], boxes[:, 1])
        xmax = np.minimum(box[2], boxes[:, 2])
        ymax = np.minimum(box[3], boxes[:, 3])
 
        # Compute intersection area
        intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
 
        # Compute union area
        box_area = (box[2] - box[0]) * (box[3] - box[1])
        boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
        union_area = box_area + boxes_area - intersection_area
 
        # Compute IoU
        iou = intersection_area / union_area
 
        return iou
 
    def xywh2xyxy(self, x):
        # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
        y = np.copy(x)
        y[..., 0] = x[..., 0] - x[..., 2] / 2
        y[..., 1] = x[..., 1] - x[..., 3] / 2
        y[..., 2] = x[..., 0] + x[..., 2] / 2
        y[..., 3] = x[..., 1] + x[..., 3] / 2
        return y
 
    def draw_detections(self, image, boxes, scores, class_ids, mask_alpha=0.3):
        det_img = image.copy()
 
        img_height, img_width = image.shape[:2]
        font_size = min([img_height, img_width]) * 0.0006
        text_thickness = int(min([img_height, img_width]) * 0.001)
 
        det_img = self.draw_masks(det_img, boxes, class_ids, mask_alpha)
 
        # Draw bounding boxes and labels of detections
        for class_id, box, score in zip(class_ids, boxes, scores):
            color = self.color_palette[class_id]
 
            self.draw_box(det_img, box, color)
 
            label = self.class_names[class_id]
            caption = f'{label} {int(score * 100)}%'
            self.draw_text(det_img, caption, box, color, font_size, text_thickness)
 
        return det_img
 
    def draw_box(self, image: np.ndarray, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),
                 thickness: int = 2) -> np.ndarray:
        x1, y1, x2, y2 = box.astype(int)
        return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
 
    def draw_text(self, image: np.ndarray, text: str, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),
                  font_size: float = 0.001, text_thickness: int = 2) -> np.ndarray:
        x1, y1, x2, y2 = box.astype(int)
        (tw, th), _ = cv2.getTextSize(text=text, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                                      fontScale=font_size, thickness=text_thickness)
        th = int(th * 1.2)
 
        cv2.rectangle(image, (x1, y1),
                      (x1 + tw, y1 - th), color, -1)
 
        return cv2.putText(image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 255, 255), text_thickness,
                           cv2.LINE_AA)
 
    def draw_masks(self, image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3) -> np.ndarray:
        mask_img = image.copy()
 
        # Draw bounding boxes and labels of detections
        for box, class_id in zip(boxes, classes):
            color = self.color_palette[class_id]
 
            x1, y1, x2, y2 = box.astype(int)
 
            # Draw fill rectangle in mask image
            cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
 
        return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)