bsw215583320
2025-03-05 7bc63303e119a13ec4f8ad240e84ec74be2cf312
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import sys
import time
import cv2
import numpy as np
import ctypes
import ctypes.wintypes
import yaml
import win32api
import win32con
import win32gui
import multiprocessing
from safety_detect import SAFETY_DETECT
from cam_util import CAM_UTIL
from identifier import IDENTIFIER
import os
from logger_config import logger
import threading
 
 
multiprocessing.freeze_support()
 
 
def variance_of_laplacian(image):
    # 计算输入图像的拉普拉斯响应的方差
    return cv2.Laplacian(image, cv2.CV_64F).var()
# 调用另一个长焦镜头,拍摄清晰的局部药材图片
def get_image():
    logger.info("识别线程启动")
    global is_loaded, class_count, class_count_max, class_sum
    camera2_index = webcams.get(cam2)
    print("第二个摄像头索引:" + str(camera2_index))
    # 打开摄像头
    capture = cv2.VideoCapture(camera2_index, cv2.CAP_DSHOW)
    # 设置分辨率y
    capture.set(cv2.CAP_PROP_FRAME_WIDTH, 2048)  # 宽度
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1540)  # 高度
    # 检查摄像头是否成功打开
    if not capture.isOpened():
        print("无法打开摄像头2")
        logger.error("无法打开摄像头2")
        exit()
    width2 = capture.get(cv2.CAP_PROP_FRAME_WIDTH)
    height2 = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
    print("摄像头2分辨率:", width2, "x", height2)
    logger.info(f"摄像头2分辨率:, {width2}, x, {height2}")
    # 循环读取摄像头画面
    # Shadows name 'width' from outer scope
    count = 0
    while True:
        ret2, frame2 = capture.read()
        if not ret2:
            print("无法读取摄像头画面")
            logger.error("无法读取摄像头画面")
            break
        count += 1
 
        if count == 2:
            herb_probabilities = herb_identifier(frame2)
            top_five_classes = np.argsort(herb_probabilities, axis=1)[0][-5:][::-1]
            name = ""
            for i, class_id in enumerate(top_five_classes):
                # 保留两位小数
                probability = round(herb_probabilities[0][class_id], 2)
                herb_class = herb_identifier.class_names[class_id]
                name = name + herb_class + "=" + str(probability)
            # 显示画面
            # cv2.imshow('Output2', resized_frame2)
            # 计算拉普拉斯响应的方差
            laplacian = variance_of_laplacian(frame2)
            # 生成保存文件名,以当前时间命名
            save_name2 = name +"_["+ str(round(laplacian, 2)) +"]_"+ time.strftime("%Y%m%d%H%M%S", time.localtime()) + ".jpg"
            logger.info(f"识别结果转换为保存图片名称:, {save_name2}")
            # 判断图像的清晰度
            # 保存调整尺寸后的图片
            if laplacian > 200:
                c_ = save_path + "2/c/"
                # 判断文件是否存在,不存在则创建
                if not os.path.exists(c_):
                    os.makedirs(c_)
                cv2.imwrite(c_ + save_name2, frame2)
                # 清晰条件下累计识别结果中药材名称出现的次数
                # 累计每种药材不论名次出现的次数,累计每种药材置信度最高的次数,累计每种药材的置信度总和
                # class_count = {}
                # class_count_max = {}
                # class_sum = {}
                for i in range(len(top_five_classes)):
                    class_id = top_five_classes[i]
                    herb_class = herb_identifier.class_names[class_id]
                    # 累计每种药材不论名次出现的次数
                    if herb_class in class_count:
                        class_count[herb_class] += 1
                    else:
                        class_count[herb_class] = 1
                    # 累计每种药材置信度最高的次数
                    if i == 0 and herb_class in class_count_max:
                        class_count_max[herb_class] += 1
                    elif i == 0:
                        class_count_max[herb_class] = 1
                    # 累计每种药材的置信度总和
                    if herb_class in class_sum:
                        class_sum[herb_class] += herb_probabilities[0][class_id]
                    else:
                        class_sum[herb_class] = herb_probabilities[0][class_id]
                is_loaded = True
            else:
                n_ = save_path + "2/n/"
                # 判断文件是否存在,不存在则创建
                if not os.path.exists(n_):
                    os.makedirs(n_)
                cv2.imwrite(n_ + save_name2, frame2)
            # cv2.imshow("Camera", resized_frame2)
            print("保存图片:", save_name2)
            break
    # 结束线程
    capture.release()
def send_result(class_count, class_count_max, class_sum):
    global is_loaded
    # 将三种统计结果输出到日志中
    logger.info("class_count:"+str(class_count))
    logger.info("class_count_max:"+str(class_count_max))
    logger.info("class_sum:"+str(class_sum))
    is_loaded = False
    l.send_msg("airecognize," + f"{class_count}")
    pass
 
 
def load_identify():
    global is_loaded
    # 摄像头索引号,通常为0表示第一个摄像头
    camera_index = webcams.get(cam1)
    print("第一个摄像头索引:" + str(camera_index))
    # 打开摄像头
    cap = cv2.VideoCapture(camera_index, cv2.CAP_DSHOW)
    # 设置分辨率
    # cap.set(cv2.CAP_PROP_FRAME_WIDTH, 3840)  # 宽度
    # cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 2160)  # 高度
    # 检查摄像头是否成功打开
    if not cap.isOpened():
        print("无法打开摄像头")
        logger.error("无法打开摄像头")
        exit()
    width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
    height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
    print("摄像头分辨率:", width, "x", height)
    logger.info(f"摄像头分辨率:, {width}, x, {height}")
    # 目标图像尺寸
    # 计时器
    frame_count = 0
    start_time = time.time()
    stime = time.time()
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    # 上次识别结果
    class_old = "1"
    # 累计次数
    count = 0
    # 上料状态
    status = "没有上料"
 
    # 累计每种药材不论名次出现的次数
    class_count = {}
    # 累计每种药材置信度最高的次数
    class_count_max = {}
    # 累计每种药材的置信度总和
    class_sum = {}
    # 循环读取摄像头画面
    while True:
        logger.info("循环读取摄像头画面")
        # 睡眠100毫秒
        time.sleep(0.1)
        ret, frame = cap.read()
        if not ret:
            print("无法读取摄像头画面")
            logger.error("无法读取摄像头画面")
            break
        # 获取当前时间
        current_time = time.time()
        # 安全检测
        boxes, scores, class_ids = safety_detect(frame)
        draw_img = safety_detect.draw_detections(frame, boxes, scores, class_ids)
        print(boxes, scores, class_ids)
        det_res = {}
        if class_ids is not None:
            # 遍历class_ids 转换成类别名称
            for i in range(len(class_ids)):
                class_id = class_ids[i]
                class_name = safety_detect.class_names[class_id]
                # 存入到det_res中
                if class_name in det_res:
                    det_res[class_name] = det_res[class_name] if det_res[class_name] > scores[i] else scores[i]
                else:
                    det_res[class_name] = scores[i]
 
        logger.info(f"安全检测识别结果, {det_res}")
        # 如果cass_ids中包含0,则表示有安全检测到人体
        if 0 in class_ids:
            l.send_msg("aidetect," + f"{det_res}")
        # 上料识别
        probabilities = load_identifier(frame)
        # 找到最大概率的类别
        predicted_class = np.argmax(probabilities, axis=1)[0]
        max_probability = np.max(probabilities, axis=1)[0]
        class_ = load_identifier.class_names[predicted_class]
        # 计算类型重复的次数,类别更换之后重新计数
        if class_ != class_old:
            count = 0
        else:
            count += 1
        class_old = class_
        print(f"{class_}:{count}: {max_probability}")
        logger.info(f"{class_}:{count}: {max_probability}")
        # 判断是否上料并且上料次数大于10次
        if class_ == "shangliao" and count > 10:
            status = "正在上料"
            # 每隔3秒取一帧图像
            # 如果距离上一次保存已经过去1秒,则保存当前画面
            if current_time - stime >= 10.0:
                save_name = time.strftime("%Y%m%d%H%M%S", time.localtime()) + ".jpg"
                # 保存调整尺寸后的图片
                path_ = save_path + "1/"
                if not os.path.exists(path_):
                    os.makedirs(path_)
                cv2.imwrite(path_ + save_name, frame)
                # 重置计时器
                stime = time.time()
 
                thread = threading.Thread(target=get_image)
                thread.start()
 
        else:
            status = "没有上料"
            if class_ == "meishangliao" and count == 3 and is_loaded:
                logger.info("停止上料后发送识别结果")
                send_result(class_count, class_count_max, class_sum)
            if class_ == "meishangliao" and count == 1000:
                is_loaded = False
                logger.info("长时间未上料,重置正在上料状态")
        # print(status)
 
        # 计算帧速率
        frame_count += 1
        end_time = time.time()
        elapsed_time = end_time - start_time
        fps = frame_count / elapsed_time
        # print(f"FPS: {fps:.2f}")
        # 将FPS绘制在图像上
        cv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2,
                    cv2.LINE_AA)
        # 显示画面
        cv2.imshow("Camera", draw_img)
        # 检测按键,如果按下q键则退出循环
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    # 关闭摄像头
    cap.release()
    # 关闭所有窗口
    cv2.destroyAllWindows()
 
 
 
# 读取配置文件
def read_config(file_path='./config/herb_ai.yaml'):
    with open(file_path, 'r') as file:
        config = yaml.safe_load(file)
    return config
 
 
 
 
 
# 消息结构
class COPYDATASTRUCT(ctypes.Structure):
    _fields_ = [
        ('dwData', ctypes.wintypes.LPARAM),
        ('cbData', ctypes.wintypes.DWORD),
        ('lpData', ctypes.c_char_p)
    ]
 
 
 
# logging.info("准备加载安全检测模型..")
# print("准备加载安全检测模型..")
# model_safe = SAFETY_DETECT(config['model']['safe'])
#
# logging.info("安全检测模型加载成功。")
# print("安全检测模型加载成功。")
# logging.info("准备加载药材识别模型..")
# print("准备加载药材识别模型..")
# model_cls = HERB_IDENTIFY(config['model']['cls'])
# logging.info("药材识别模型加载成功。")
# print("药材识别模型加载成功。")
 
 
class Listener:
    def __init__(self):
        WindowName = config['win']['windowName']
        ClassName = config['win']['className']
        message_map = {
            win32con.WM_COPYDATA: self.OnCopyData,
            win32con.WM_CLOSE: self.HandleClose,
        }
        wc = win32gui.WNDCLASS()
        wc.lpfnWndProc = message_map
        wc.lpszClassName = ClassName
        hinst = wc.hInstance = win32api.GetModuleHandle(None)
        classAtom = win32gui.RegisterClass(wc)
        self.hwnd = win32gui.CreateWindow(
            classAtom,
            WindowName,
            win32con.WS_OVERLAPPEDWINDOW,  # 窗口样式
            0,
            0,
            win32con.CW_USEDEFAULT,
            win32con.CW_USEDEFAULT,
            0,
            0,
            hinst,
            None
        )
        logger.info(f"启动成功.当前句柄{self.hwnd}")
        # # 隐藏窗口
        # win32gui.ShowWindow(self.hwnd, win32con.SW_HIDE)
        print("启动成功.当前句柄", self.hwnd)
 
 
    def OnCopyData(self, hwnd, msg, wparam, lparam):
        try:
            # 记录开始时间
            start_time = time.time()
            pCDS = ctypes.cast(lparam, PCOPYDATASTRUCT)
            s = ctypes.string_at(pCDS.contents.lpData).decode()
            strArr = s.split(",")
            logger.info(f"收到来自句柄{hwnd}的消息:{s}")
            print(f"收到来自句柄{hwnd}的消息:{s}")
            res = {}
            msg = ""
            # 发送指令:
            # AI药材识别:100
            # AI上料区安全检测:101
            # AI下料满料识别:102
            # AI下料区安全检测:103
 
            # 接收指令: 药材识别接收指令:airecognize, {json}
            # AI上料区安全检测:aidetect, {json}
            if strArr[0] == '100':
                pass
                # names, confs = cls_process(strArr[1])
                # for idx, name in enumerate(names):
                #     if name in res:
                #         res[name] = res[name] if res[name] > confs[idx] else confs[idx]
                #     else:
                #         res[name] = confs[idx]
                # msg = "airecognize," + f"{res}"
            elif strArr[0] == '101':
                pass
                # names, confs = safe_process(strArr[1])
                # for idx, name in enumerate(names):
                #     if name in res:
                #         res[name] = res[name] if res[name] > confs[idx] else confs[idx]
                #     else:
                #         res[name] = confs[idx]
                # msg = "aidetect," + f"{res}"
 
 
 
            logger.info(f"识别结果:{res}")
            self.send_msg(msg)
            # 记录结束时间
            end_time = time.time()
            # 计算执行时间
            execution_time = end_time - start_time
            # 打印执行时间
            print(f"程序执行时间为:{execution_time}秒")
            logger.info(f"程序执行时间为:{execution_time,}秒")
            logger.info("-" * 20)
 
        except Exception as e:
            print(e)
            pass
        return 1
 
    def send_msg(self, msg):
        # 通过寻找窗口名获取句柄
        hwnd = FindWindow(config['tag_win']['className'], config['tag_win']['windowName'])
        print(f"返回结果,发现窗口:{hwnd}")
        logger.info(f"返回结果,发现窗口:{hwnd}")
        # 或者直接根据句柄来发送
        # hwnd = 1707560
        cds = COPYDATASTRUCT()
        cds.dwData = 0
        msg_bytes = msg.encode('utf-8')
        cds.cbData = ctypes.sizeof(ctypes.create_string_buffer(msg_bytes))
        cds.lpData = ctypes.c_char_p(msg_bytes)
        SendMessage(hwnd, win32con.WM_COPYDATA, 0, ctypes.byref(cds))
 
    def HandleClose(self, hwnd, msg, wparam, lparam):
        logger.info("关闭窗口")
        print("handle close")
        # 关闭当前窗口
        win32gui.DestroyWindow(hwnd)
        sys.exit()
        return 0
 
if __name__ == '__main__':
    cam1 = "USB Camera"
    cam2 = "PC Camera"
    camUtil = CAM_UTIL(cam1, cam2)
    webcams = camUtil.list_webcams()
    print("摄像头", webcams)
    save_path = "data/images/"
    # 是否上过料
    is_loaded = False
    # 加载ONNX模型
    herb_identifier = IDENTIFIER("model/herb_identify.onnx")
    load_identifier = IDENTIFIER("model/loading.onnx")
    safety_detect = SAFETY_DETECT("model/safety_det.onnx")
    config = read_config()
    PCOPYDATASTRUCT = ctypes.POINTER(COPYDATASTRUCT)
 
    # 查询窗口方法
    FindWindow = ctypes.windll.user32.FindWindowW
    # 发送消息方法
    SendMessage = ctypes.windll.user32.SendMessageW
    l = Listener()
    load_identify()
    win32gui.PumpMessages()