import numpy as np
|
import cv2, time
|
import yaml
|
from openvino.runtime import Core
|
|
# 读取配置文件
|
def read_config(file_path='model/safe_det/metadata.yaml'):
|
with open(file_path, 'r',encoding="utf-8") as file:
|
config = yaml.safe_load(file)
|
return config
|
|
|
MODEL_NAME = "model/best.xml"
|
|
CLASSES = read_config()['names']
|
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
|
|
|
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
|
label = f'{CLASSES[class_id]} ({confidence:.2f})'
|
color = colors[class_id]
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
# 实例化Core对象
|
core = Core()
|
# 载入并编译模型
|
# 加载模型
|
model_path = "model/safe_det/best.xml" # 替换为你的模型路径
|
model = core.read_model(model=model_path)
|
net = core.compile_model(model=model, device_name="CPU")
|
# 获得模型输出节点
|
output_node = net.outputs[0] # yolov8n只有一个输出节点
|
ir = net.create_infer_request()
|
cap = cv2.VideoCapture(0)
|
|
while True:
|
start = time.time()
|
ret, frame = cap.read()
|
if not ret:
|
break
|
[height, width, _] = frame.shape
|
length = max((height, width))
|
image = np.zeros((length, length, 3), np.uint8)
|
image[0:height, 0:width] = frame
|
scale = length / 640
|
|
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
|
outputs = ir.infer(blob)[output_node]
|
outputs = np.array([cv2.transpose(outputs[0])])
|
rows = outputs.shape[1]
|
|
boxes = []
|
scores = []
|
class_ids = []
|
|
for i in range(rows):
|
classes_scores = outputs[0][i][4:]
|
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
|
if maxScore >= 0.25:
|
box = [outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
|
outputs[0][i][2], outputs[0][i][3]]
|
boxes.append(box)
|
scores.append(maxScore)
|
class_ids.append(maxClassIndex)
|
|
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
|
|
for i in range(len(result_boxes)):
|
index = result_boxes[i]
|
box = boxes[index]
|
draw_bounding_box(frame, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
|
round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))
|
end = time.time()
|
print("start", start)
|
print("end", end)
|
print("time",end - start)
|
# show FPS
|
fps = (1 / (end - start))
|
fps_label = "%.2f FPS" % fps
|
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
cv2.imshow('YOLOv8 OpenVINO Infer Demo on AIxBoard', frame)
|
# wait key for ending
|
if cv2.waitKey(1) > -1:
|
cap.release()
|
cv2.destroyAllWindows()
|
break
|