#split_data.py
|
# 划分数据集yaocai,数据集划分到yaocai2中,训练验证比例为8:2
|
import os
|
from shutil import copy
|
import random
|
def mkfile(file):
|
if not os.path.exists(file):
|
os.makedirs(file)
|
|
# 获取data文件夹下所有文件夹名(即需要分类的类名)
|
#划分数据集flower_data,数据集划分到flower_datas中
|
file_path = 'E:\yaocai'
|
new_file_path = 'E:\yaocai2'
|
|
# 划分比例,训练集 : 验证集 = 8 : 2
|
split_rate = 0.2
|
|
data_class = [cla for cla in os.listdir(file_path)]
|
|
train_path = new_file_path + '/train/'
|
val_path = new_file_path + '/val/'
|
# 创建 训练集train 文件夹,并由类名在其目录下创建子目录
|
mkfile(new_file_path)
|
for cla in data_class:
|
mkfile(train_path + cla)
|
|
# 创建 验证集val 文件夹,并由类名在其目录下创建子目录
|
mkfile(new_file_path)
|
for cla in data_class:
|
mkfile(val_path + cla)
|
|
# 遍历所有类别的全部图像并按比例分成训练集和验证集
|
for cla in data_class:
|
cla_path = file_path + '/' + cla + '/' # 某一类别的子目录
|
images = os.listdir(cla_path) # iamges 列表存储了该目录下所有图像的名称
|
num = len(images)
|
eval_index = random.sample(images, k=int(num * split_rate)) # 从images列表中随机抽取 k 个图像名称
|
for index, image in enumerate(images):
|
# eval_index 中保存验证集val的图像名称
|
if image in eval_index:
|
image_path = cla_path + image
|
new_path = val_path + cla
|
copy(image_path, new_path) # 将选中的图像复制到新路径
|
|
# 其余的图像保存在训练集train中
|
else:
|
image_path = cla_path + image
|
new_path = train_path + cla
|
copy(image_path, new_path)
|
print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="") # processing bar
|
print()
|
|
print("processing done!")
|