import time import cv2 import numpy as np import onnxruntime class IDENTIFIER: def __init__(self, path): # Initialize model self.initialize_model(path) def __call__(self, image): return self.idengify(image) def initialize_model(self, path): self.session = onnxruntime.InferenceSession(path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.class_names = eval(self.session.get_modelmeta().custom_metadata_map['names']) # Get model info self.get_input_details() self.get_output_details() def idengify(self, image): input_tensor, ratio = self.prepare_input(image) # Perform inference on the image outputs = self.inference(input_tensor) self.herb_probabilities = outputs[0] return self.herb_probabilities def prepare_input(self, image): self.img_height, self.img_width = image.shape[:2] input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Resize图片不要直接使用resize,需要按比例缩放,空白区域填空纯色即可 input_img, ratio = self.ratioresize(input_img) # Scale input pixel values to 0 to 1 input_img = input_img / 255.0 input_img = input_img.transpose(2, 0, 1) input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32) return input_tensor, ratio def inference(self, input_tensor): start = time.perf_counter() outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor}) # print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms") return outputs def get_input_details(self): model_inputs = self.session.get_inputs() self.input_names = [model_inputs[i].name for i in range(len(model_inputs))] self.input_shape = model_inputs[0].shape self.input_height = self.input_shape[2] self.input_width = self.input_shape[3] def get_output_details(self): model_outputs = self.session.get_outputs() self.output_names = [model_outputs[i].name for i in range(len(model_outputs))] # 等比例缩放图片 def ratioresize(self, im, color=114): shape = im.shape[:2] new_h, new_w = self.input_height, self.input_width padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color # Scale ratio (new / old) r = min(new_h / shape[0], new_w / shape[1]) # Compute padding new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) if shape[::-1] != new_unpad: im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) padded_img[: new_unpad[1], : new_unpad[0]] = im padded_img = np.ascontiguousarray(padded_img) return padded_img, 1 / r