import cv2 import time import numpy as np import onnxruntime from scipy.special import softmax # 加载ONNX模型 session = onnxruntime.InferenceSession("model/detect/best.onnx") # 摄像头索引号,通常为0表示第一个摄像头 camera_index = 0 # 打开摄像头 cap = cv2.VideoCapture(camera_index, cv2.CAP_DSHOW) # 设置分辨率 cap.set(cv2.CAP_PROP_FRAME_WIDTH, 3840) # 宽度 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 2160) # 高度 # 检查摄像头是否成功打开 if not cap.isOpened(): print("无法打开摄像头") exit() width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) print("摄像头分辨率:", width, "x", height) # 从res.json中读取类别 # with open("res1-2.json", "r") as f: # classes = eval(f.read()) # 目标图像尺寸 target_width = 1024 target_height = 768 # 计时器 start_time = time.time() # 循环读取摄像头画面 while True: ret, frame = cap.read() if not ret: print("无法读取摄像头画面") break # 1920*1080的图像,中心裁剪640*480的区域 cropped_frame = frame[int(height / 2 - target_height / 2):int(height / 2 + target_height / 2), int(width / 2 - target_width / 2):int(width / 2 + target_width / 2)] # 调整图像尺寸 resized_frame = cv2.resize(cropped_frame, (target_width, target_height)) # 获取当前时间 current_time = time.time() #如果距离上一次保存已经过去1秒,则保存当前画面 # if current_time - start_time >= 3.0: # # 生成保存文件名,以当前时间命名 # save_name = time.strftime("%Y%m%d%H%M%S", time.localtime()) + ".jpg" # # 保存调整尺寸后的图片 # cv2.imwrite(save_path + save_name, frame) # print("保存图片:", save_name) # # 重置计时器 # start_time = time.time() # 预处理 blob = cv2.dnn.blobFromImage(resized_frame, 1 / 255.0, (640, 640), swapRB=True, crop=False) # 模型推理 outputs = session.run(None, {session.get_inputs()[0].name: blob}) output = np.transpose(np.squeeze(outputs[0])); rows = output.shape[0] boxes = [] scores = [] class_ids = [] for i in range(rows): classes_scores = output[i][4:] max_score = np.amax(classes_scores) if max_score > 0.5: classid = np.argmax(classes_scores) scores.append(max_score) class_ids.append(classid) print(class_ids) print(scores) # # 输出前十个类别 # print("Top 5 Classes:") # for i in top_ten_classes: # print(f"{classes[i]}: {probabilities[0][i]}") # 显示画面 cv2.imshow("Camera", resized_frame) # 检测按键,如果按下q键则退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 关闭摄像头 cap.release() # 关闭所有窗口 cv2.destroyAllWindows()